Неоднократно возникали подобные вопросы. Держу у себя выписку из советских еще норм
IIIа из СНиП 2.01.02-85* ПРИЛОЖЕНИЕ 2 Справочное
ПРИМЕРНЫЕ КОНСТРУКТИВНЫЕ ХАРАКТЕРИСТИКИ ЗДАНИЙ
В ЗАВИСИМОСТИ ОТ ИХ СТЕПЕНИ ОГНЕСТОЙКОСТИ
1. Степень огнестойкости
2. Конструктивные характеристики

I
Здания с несущими и ограждающими конструкциями из естественных или искусственных каменных материалов, бетона или железобетона с применением листовых и плитных негорючих материалов

II
То же. В покрытиях зданий допускается применять незащищенные стальные конструкции

III
Здания с несущими и ограждающими конструкциями из естественных или искусственных каменных материалов, бетона или железобетона. Для перекрытий допускается использование деревянных конструкций, защищенных штукатуркой или трудногорючими листовыми, а также плитными материалами. К элементам покрытий не предъявляются требования по пределам огнестойкости и пределам распространения огня, при этом элементы чердачного покрытия из древесины подвергаются огнезащитной обработке

IIIа
Здания преимущественно с каркасной конструктивной схемой. Элементы каркаса — из стальных незащищенных конструкций. Ограждающие конструкции — из стальных профилированных листов или других негорючих листовых материалов с трудногорючим утеплителем

IIIб
Здания преимущественно одноэтажные с каркасной конструктивной схемой. Элементы каркаса — из цельной или клееной древесины, подвергнутой огнезащитной обработке, обеспечивающей требуемый предел распространения огня. Ограждающие конструкции — из панелей или поэлементной сборки, выполненные с применением древесины или материалов на ее основе. Древесина и другие горючие материалы ограждающих конструкций должны быть подвергнуты огнезащитной обработке или защищены от воздействия огня и высоких температур таким образом, чтобы обеспечить требуемый предел распространения огня.

IV
Здания с несущими и ограждающими конструкциями из цельной или клееной древесины и других горючих или трудногорючих материалов, защищенных от воздействия огня и высоких температур штукатуркой или другими листовыми или плитными материалами. К элементам покрытий не предъявляются требования по пределам огнестойкости и пределам распространения огня, при этом элементы чердачного покрытия из древесины подвергаются огнезащитной обработке

IVа
Здания преимущественно одноэтажные с каркасной конструктивной схемой. Элементы каркаса — из стальных незащищенных конструкций. Ограждающие конструкции — из стальных профилированных листов или других негорючих материалов с горючим утеплителем

V
Здания, к несущим и ограждающим конструкциям которых не предъявляются требования по пределам огнестойкости и пределам распространения огня

Примечание. Строительные конструкции зданий, приведенные в настоящем приложении, должны отвечать требованиям табл. 1 и другим нормам настоящего СНиП.

Самая высокая степень огнестойкойсти I (мавзолей).

www.proektant.org

45.Аттестационные и классификационные методы оценки пожарной опас­ности строительных материалов

  1. Метод испытания горючих материалов для определения их групп горючести (метод — 2) [4]

Метод относится к крупномасштабным, что связано с размерами установки (шахтной печи) и образцов испытуемого материала.

Его применяют для испытаний всех однородных и слоистых горю­чих материалов, в том числе применяемых в качестве отделочных и облицо­вочных, а также лакокрасочных покрытий.

Сущность метода заключается в воздействии на образец материала пламени газовой горелки в течение 10 мин и регистрации параметров, ха­рактеризующих его поведение при огневом воздействии.

Для испытаний берут 12 образцов. Размеры образцов: 1000×190 мм, толщиной до 70 мм. Для испытаний их располагают вертикально, складывая по 4 в виде короба.

Образцы для испытания материалов, применяемых в качестве отде­лочных и облицовочных, а также для испытаний лакокрасочных покрытий изготавливают в сочетании с негорючей основой. Способ крепления дол­жен обеспечивать плотный контакт поверхностей материала и основы. В качестве негорючей основы используют, как правило, асбестоцементные листы толщиной 10 и 12 мм.

Установка для проведения испытаний представляет собой вертикаль­ную печь шахтного типа (рис. 1.7).

Последовательность операций в процессе испытаний следующая.

  1. Взвешивают образцы и прикрепляют их к раме держателя 4.

  2. Вставляют образцы 6 в камеру сжигания 9, закрепляют и закры­вают дверцу 5.

  3. Включают вентилятор 13 (включение вентилятора является нача­лом испытаний).

  4. Зажигают газовую горелку 10.

  5. С момента начала испытаний в течение 10 мин фиксируют темпе­ратуру дымовых газов с помощью термопар 8 и время самостоятельного го­рения образца.

  6. После испытаний остывшие образцы извлекают из печи, прово­дят измерения длины поврежденной части образцов и взвешивают их.

Таблица 1.5

Классификация материалов по группам горючести

Группа

горючести

материалов

Параметры горючести

Температура дымовых газов /,°С

Степень повреждения по длине Si, %

Степень повреждения по массе Su, %

Продолжительность самостоятельного ГОреНИЯ 1сг, с

Г1

<135

<65

<20

0

Г2

<235

<85

<20

<30

ГЗ

<450

>85

<50

<300

Г4

>450

>85

>50

>300

Результаты испытаний оценивают по данным табл. 1.5.

Примечание. Для материалов групп горючести Г1-ГЗ не допускается образование горящих капель расплава при испытании.

  1. Метод испытания материалов на воспламеняемость [5]

. Метод применяют для всех однородных и слоистых горючих строи­тельных материалов.

Сущность метода состоит в определении параметров воспламеняе­мости материала при заданных стандартных уровнях воздействия на повер­хность образца лучистого теплового потока и пламени от источника зажи­гания, которые определяют на приборе, изображенном на рис. 1.8.

Параметрами воспламеняемости являются КППТП — критическая поверхностная плотность теплового потока и время воспламенения.

КППТП — минимальное значение поверхностной плотности тепло­вого потока (ППТП), при котором возникает устойчивое

пламенное горе­ние. КППТП используют для классификации материалов по группам воспла­меняемости.

Уровни воздействия лучистого теплового потока должны находить­ся в пределах от 5 до 50 кВт/м2.

Для испытания готовят 15 образцов, имеющих форму квадрата со стороной 165 (-5) мм, толщиной не более 70 мм.

Порядок испытаний следующий.

  1. Образец после кондиционирования оборачивают листом алюми­ниевой фольги, в центре которого вырезано отверстие диаметром 140 мм.

  2. Образец помещают в держатель, устанавливаемый на подвижную платформу и производят регулировку противовеса. Затем держатель с об­разцом для испытаний заменяют держателем с образцом-имитатором.

  3. Устанавливают подвижную горелку в исходное положение, регу­лируют расход газа (от 13 до 20 мл/мин) и воздуха (от 160 до 180 мл/мин), подаваемых в горелку. Расход газа для вспомогательной горелки регулиру­ют по длине пламени (около 15 мм).

  4. Выключают электропитание и по регулирующему термоэлектри­ческому преобразователю (термопаре) задают полученную при калибровке установки величину термо-ЭДС (напряжения), соответствующую ППТП 30 кВт/м2.

  5. После достижения заданной величины термо-ЭДС установку вы­держивают в этом режиме не менее 5 мин. При этом величина термо-ЭДС не должна отклоняться более чем на 1%.

  6. Помещают экранирующую пластину на защитную плиту, заменя­ют образец-имитатор на образец для испытания, включают механизм под­вижной горелки, удаляют экранирующую пластину и включают регистра­тор времени.

  7. По истечении 15 мин или при воспламенении образца испытание прекращают. Для этого помещают экранирующую пластину на защитную плиту, останавливают регистратор времени и механизм подвижной горелки, удаляют держатель с образцом и помещают на подвижную платформу об­разец имитатор, убирают экранирующую пластину.

  8. Задают величину ППТП 20 кВт/м2 (если в предыдущем испытании зафиксировано воспламенение) или 40 кВт/м2 при его отсутствии. Повторя­ют операции по п. 5-7.

  9. Если при ППТП 20 кВт/м2 зафиксировано воспламенение, умень­шают величину ППТП до 10 кВт/м2 и повторяют операции 5-7.

  10. Если при ППТП 40 кВт/м2 воспламенение отсутствует, задают величину ППТП 50 кВт/м2 и повторяют операции 5-7. При отсутствии вос­пламенения при ППТП 50 кВт/м2 проводят еще 2 испытания при этом ППТП, и если воспламенение не наблюдается, то испытания прекращают.

11. После определения двух величин ППТП, при одной из которых наблюдается воспламенение, а при другой отсутствует, задают величину ППТП на 5 кВт/м2 больше той величины, при которой воспламенение от­сутствует, и повторяют операции п. 5-7 на трех образцах.

За КППТП считают наименьшую величину ППТП, при которой для грех образцов зафиксировано воспламенение.

Оценку по воспламеняемости материалов производят по табл. 1.6.

  1. Метод испытания материалов на распространение пламени [6]

Метод применяют для испытания всех однородных и слоистых го­рючих материалов, используемых в поверхностных слоях полов и кровель зданий.

Сущность метода состоит в определении критической поверхност- ‘ ной плотности теплового потока (КППТП), величину которого устанавли- ; вают по длине распространения пламени по образцу в результате воздей­ствия теплового потока на его поверхность.

Длина распространения пламени (I) — максимальная величина по­вреждения поверхности образца в результате распространения пламенного горения.

Для испытаний изготавливают 5 образцов материала размером 1100 х 250 мм. Для анизотропных материалов изготавливают 2 комплекта об­разцов (например, по утку и по основе). Образцы изготавливают в сочетании с негорючей основой. Способ крепления материала к основе должен соответ­ствовать используемому в реальных условиях. В качестве негорючей основы применяют асбестоцементные листы толщиной 10 или 12 мм. Толщина образца с негорючей основой должна составлять не более 60 мм.

Испытательная установка (рис. 1.9) состоит из следующих основных

блоков:

испытательной камеры с дымоходом и вытяжным зонтом;

источника лучистого теплового потока (радиационной панели);

источника зажигания (газовой горелки);

держателя образца и устройства для введения держателя в испыта­тельную камеру (платформы).

Установку оборудуют приборами для регистрации и измерения тем­пературы в испытательной камере и дымоходе.

Порядок испытаний следующий.

  1. После калибровки установки, т.е. после установления требуемых ГОСТ [6] величин ППТП в заданных точках калибровочного образца и по его поверхности, а также подготовки ее к работе открывают дверцу каме­ры и зажигают газовую горелку, располагая ее так, чтобы расстояние до экспонируемой поверхности составляло не менее 50 мм.

  2. Устанавливают образец в держатель, фиксируют, помещают их на платформу и вводят в камеру.

  3. Закрывают дверцу камеры и включают секундомер. После выдер­жки в течение 2 мин приводят пламя горелки в контакт с образцом в точке

  1. расположенной на центральной оси. Оставляют факел пламени в этом по­ложении в течение 10 мин. По истечении времени горелку возвращают в исходное положение.

  1. При отсутствии воспламенения образца в течение 10 мин испыта­ние считают законченным. В случае воспламенения образца испытание за­канчивают при прекращении пламенного горения или по истечении 30 мин

разца проводят после охлаждения держателя образца до комнатной темпе­ратуры и проверки соответствия ППТП требованиям ГОСТ [6].

  1. Измеряют длину поврежденной части образца по его продольной оси для каждого из пяти образцов.

Таблица 1.7

Классификация материалов по распространению пламени

Группа распространения пламени по материалу [2, 6]

КППТП, кВт/м

РП1 — нераспространяющие пламя

>11

РП2 — слабораспространяющие пламя

8-11

РПЗ — умереннораспространяющие пламя

5-8

РП4 — сильнораспространяющие пламя

<8

Повреждением считается выгорание и обугливание материала об­разца в результате распространения пламенного горения по его поверхно­сти. Оплавление, коробление, спекание, вспучивание, усадка, изменение цвета, формы, нарушение целостности образца (разрывы, сколы поверхно­сти) повреждением не считаются.

Длину распространения пламени определяют как среднее арифмети­ческое по длине поврежденной части пяти образцов.

Горючие строительные материалы в зависимости от величины КППТП подразделяют на 4 группы распространения пламени (табл. 1.7).

  1. Метод экспериментального определения коэффициента дымообразования твердых веществ и материалов [3, 8]

Сущность метода состоит в фотометрической регистрации ослабле­ния освещенности при прохождении света через задымленное простран­ство.

Определение удельной оптической плотности дыма на единицу по­тери массы образца проводят с помощью двухкамерной установки, состо­ящей из камеры сгорания (объемом 0,003 м) и дымовой камеры (объемом

  1. 51 м3) с измерительной аппаратурой (рис. 1.10).

Для испытания изготовляют не менее 10 образцов 40x40x10 мм. От­делочные и облицовочные материалы, а также лакокрасочные и пленочные покрытия испытывают нанесенными на ту же основу, которая принята в ре­альной конструкции.

Испытания проводят в двух режимах: термоокислительного разло­жения (тления) и пламенного горения. Первый режим (тления) обеспечива­ется при нагревании поверхности образца до температуры 400( + 5)°С при плотности теплового потока 18(4-1) кВт/м2. Материалы, более стойкие к термоокислительной деструкции, испытывают при нагреве до 600°С при плотности теплового потока 38(+ 1) кВт/м2. Во всех случаях материалы не должны самовоспламеняться при испытании.

Режим пламенного горения обеспечивается при использовании газо­вой горелки и нагревании поверхности образца до температуры 650( + 10) °С при плотности теплового потока 65( + 2) кВт/м2.

Перед проведением испытаний в режиме пламенного горения подго­товку проводят в следующей последовательности:

  1. Вставляют в держатель 2 вкладыш с тарировочным (асбестоце­ментным) образцом.

  2. Закрывают обе камеры.

  3. Подают на спирали электронагревательной панели 15 напряжение, л тмкже подают напряжение на спираль, обогревающую защитное стекло 3.

  4. После выхода панели на стационарный режим нагрева включают осветитель 9, измерительный прибор люксметра, вентилятор перемешива­ния 11.

  5. Открывают камеру сгорания 1.

  6. Вынимают вкладыш с асбестоцементным образцом.

  7. Зажигают газовую горелку.

  8. Закрывают камеру.

  9. Производят продувку камеры сгорания в течение 1 мин.

  10. Регулируют диафрагмами осветитель, установив освещенность 100 лк и диаметр пучка света, равный диаметру светочувствительной повер­хности фотоэлемента 5.

Порядок испытаний состоит в следующем:

  1. Подготовленный образец испытуемого материала устанавливают во вкладыш.

  2. Открывают дверцу камеры сгорания 1, быстро вставляют вкла­дыш в держатель 2 образца и закрывают дверцу.

Продолжительность испытания определяют по времени достижения минимальной освещенности, но не более 15 мин.

При испытании в режиме термоокислительного разложения (тле­ния) газовую горелку не зажигают. Порядок проведения испытаний анало­гичен порядку, установленному для режима пламенного горения.

В случае самовоспламенения образцов температуру испытания уменьшают с интервалом 50°С.

Испытывают по 5 образцов материала в каждом режиме.

По результатам каждого испытания в режиме тления и пламенного горения коэффициент дымообразования, м2/кг вычисляют по формуле

V т In ° L m

(1.19)

где V — объем дымовой камеры, м3;

I — длина светового луча в задымленной газовой среде, м; m — масса исследуемого материала, кг;

Т, Т — начальная и минимальная освещенность, соответственно, лк.

о min

Затем отдельно (для режимов тления и пламенного горения) вычис­ляют средние арифметические значения пяти измерений. За окончательный результат принимают наибольшую из двух полученных величин.

По величине коэффициента дымообразования материалы классифи­цируются на следующие группы [2, 3] (табл. 1.8).

Таблица 1.8

Группа по дымообразующей способности

Коэффициент дымообразования Д ., mVkt

Д1 с малой дымообрузующей способностью

<50

Д2 1 умеренной дымообразующей способностью

50-500

Д1 i‘ иысокоМ дымообразующей способностью

>500

  1. Метод экспериментального определения показателя токсичности продуктов горения полимерных материалов [3; 8]

Сущность метода определения показателя токсичности заключает­ся в установлении количественной зависимости летального эффекта про­дуктов горения от массы материала, отнесенной к единице объема замкну­того пространства.

Метод реализуется с помощью экспериментальной установки, изоб­раженной на рис. 1.11.

Для испытаний готовят не менее 10 образцов с размерами в плане 60×60 мм и реальной толщиной не более 10 мм.

Как и по методу определения коэффициента дымообразования, ис­пытания проводят в двух режимах: термоокислительного разложения и пла­менного горения.

В предварительных опытах определяют для каждого материала тем­пературный режим, способствующий выделению более токсичных продук­тов горения.

Для герметизации камеры 1 (см. рис. 1.11) нагнетают воздух в надув­ную прокладку, вставляют в держатель образца 2 вкладыш с контрольным образцом из асбестоцемента с размерами 60x60x10 мм. На центральном уча­стке обогреваемой поверхности образца закрепляют термоэлектрический преобразователь. Закрывают заслонки 4 переходных рукавов 5, 17 и внут­реннюю дверцу предкамеры 9, выводят установку на режим пламенного го­рения. После выхода электронагревательной панели 3 на стационарный ре- ким открывают заслонки 4 переходных рукавов и дверцу камеры сгорания. Нынимают вкладыш с контрольным образцом и термопарой, зажигают га­зовую горелку.

Устанавливают в держатель вкладыш с образцом исследуемого мате- I) иала. После воспламенения образца газовую горелку немедленно отключают.

Продолжительность горения образца определяют по времени дости- ж ония максимальных значений концентрации СО и С02 в экспозиционной камере б, 7или принимают равным 5( + 0,5) мин.

Затем закрывают заслонки 4 переходных рукавов 5, 17 и включают иеитилятор перемешивания 13.

Клетку Юс животными помещают в предкамеру, наружную дверцу которой закрывают.

После снижения температуры газов в нижней части экспозицион­ной камеры до 30°С открывают внутреннюю дверцу 9 предкамеры и фикси­руют время начала экспозиции животных. Экспозицию проводят в течение 10 ( + 0,5) мин при концентрации кислорода не менее 16%. В каждом испы­тании используют 10 белых мышей массой по 20( + 2) г.

По истечении времени экспозиции открывают клапан продувки зас­лонки переходных рукавов, наружную дверцу предкамеры, включают вен­тилятор и вентилируют установку в течении 10( + 1) мин. Регистрируют чис ло погибших мышей и характерные признаки интоксикации.

Испытания в режиме термоокислительного разложения (тления) проводят при температуре 400( + 5)°С, при этом газовую горелку не зажига­ют. Материалы, разлагающиеся при более высокой температуре, испытыва­ют при температуре 600( + 5)°С (плотность теплового потока 38( + 1) кВт/м2). В случае самовоспламенения образца температуру испытания уменьшают с интервалом 50°С.

Критерием выбора режима испытаний служит наибольшее число летальных исходов в сравниваемых группах подопытных животных. При определении токсичного эффекта учитывают гибель животных, наступив­шую во время экспозиции, а также в течение последующих 14 суток.

В зависимости от состава материала (при анализе их продуктов го­рения) определяют количество оксида и диоксида углерода, цианистого во­дорода, акрилонитрила, хлористого водорода, бензола, окислов азота, аль­дегидов и других веществ.

Полученный ряд значений зависимости летальности от массы мате­риала используют для расчета показателя токсичности ЯС150, г/м3.

Значение показателя токсичности продуктов горения используют для сравнительной оценки пожарной опасности полимерных материалов. Но величине указанного показателя их классифицируют на 4 группы (табл. 1.9).

Таблица 1.9

Классификация материалов по токсичности

Г руппа токсичности

Показатель токсичности Ясио, г/м3

Т1 — малоопасные

> 120

Т2 — умеренноопасные

40-120

ТЗ — высокоопасные

13-40

Т4 — чрезвычайноопасные

< 13

Примечание. Числовые значения HCL50 приведены для времени ‘КСПОЗИЦИИ — 30 мин.

studfiles.net

Выбор размеров зданий и пожарных отсеков следует производить в зависимости от степени их огнестойкости, класса конструктивной и функциональной пожарной опасности и пожарной опасности происходящих в них технологических процессов, в соответствии с требованиями нормативных документов по пожарной безопасности.

Площадь пожарного отсека характеризуется максимальной величиной площади этажа, расположенного в пределах данного отсека.

Площадь этажа в пределах пожарного отсека определяется максимальной площадью этажа, ограниченной наружными стенами здания и (или) противопожарными стенами 1-го типа. Данная площадь определяется с учетом следующих дополнительных требований:

— площадь этажа в пределах пожарного отсека зданий, соединенных переходами, тоннелями или галереями, следует рассчитывать путем суммирования площадей соединяемых этажей зданий и площадей переходов, тоннелей или галерей;

— в производственных и складских зданиях (классы Ф5.1, Ф5.2 и Ф5.3) при наличии открытых проемов в перекрытиях площадь этажа в пределах пожарного отсека следует рассчитывать путем суммирования площадей этажей, соединенных проемами;

— в зданиях автостоянок с неизолированными рампами площадь этажа в пределах пожарного отсека определяется как сумма площадей этажей, соединенных неизолированными рампами;

— для зданий классов функциональной пожарной опасности Ф1.1, Ф1.2, Ф2-Ф4 при определении площади этажа в пределах пожарного отсека необходимо учитывать площадь навесов, террас и галерей, пристроенных к зданию, если они не отделены от основной части здания противопожарными стенами 1-го типа;

— в зданиях классов функциональной пожарной опасности Ф1.1, Ф1.2, Ф2-Ф4 с многосветными помещениями, предназначенными для размещения открытых лестниц, эскалаторов, атриумов и др., площадь этажа в пределах пожарного отсека определяется путем суммирования площади нижнего этажа многосветного помещения и площадей галерей, переходов и помещений всех вышележащих этажей, расположенных в пределах объема многосветного пространства, ограниченного противопожарными перегородками 1-го типа. При отсутствии противопожарных перегородок 1-го типа, отделяющих многосветное пространство (помещение) от примыкающих к нему помещений и коридоров, площадь этажа в пределах пожарного отсека определяется путем суммирования площадей соответствующих этажей.

При сочетаниях этих показателей, не предусмотренных настоящим разделом, площадь этажа и высота здания принимаются по худшему из этих показателей для рассматриваемого здания соответствующего класса функциональной пожарной опасности.

При проектировании, строительстве, реконструкции, капитальном ремонте и техническом перевооружении объектов дополнительно к требованиям настоящего свода правил следует руководствоваться положениями СП 4.13130.2009.

 

6.1. Производственные здания (Ф5.1, Ф5.3)
6.2. Складские здания и здания холодильников
6.3. Стоянки автомобилей (Ф5.2)
6.4. Надземные стоянки открытого типа для легковых автомобилей
6.5. Жилые здания (дома)
6.6. Административно-бытовые здания предприятий

www.pogaranet.ru

Что такое огнестойкость здания и зачем она определяется?

Предел огнестойкости конструкции — это показатель, с помощью которого можно узнать степень сопротивляемости данной конструкции огню.

Ещё в древнем мире люди страдали от случайных или намеренных поджогов деревянных и тонкостенных зданий. Это побудило общество создавать аварийные выходы, улучшать методы построения зданий. И люди заметили, что деревянные сооружения, насколько бы прочными они ни были, активно поддерживают горение, а каменные, наоборот, сложно сжечь дотла. Это послужило толчком для введения в обиход понятия огнестойкости.

С помощью практической установки показателя сопротивления огню выявляются наиболее пожаро- и взрывоопасные части здания.

Категории испытуемых помещений по содержимому

Наличие в помещение взрывчатых или просто легко возгорающихся веществ значительно понижает уровень огнестойкости сооружения. Так, здания или комнаты делят на несколько групп, отраженных в таблице.

предел огнестойкости конструкции

Категория Характеристика материалов и/или веществ
А (взрывопожароопасно) В здании или помещении находятся галлоны с горючими газами или легко воспламеняющимися жидкостями, с температурой горения менее 30°С.

Материалы или иные предметы, способные легко воспламеняться при контакте с воздухом, водой, поверхностью, друг с другом.

При этом взрывы и пожары образуют давление воздуха в помещении, превышающее показатель в 5кПа.

Б

(взрывопожароопасно)

Присутствуют взрывоопасные газы и жидкости с температурой возгорания более 30°С.

Горючие жидкости в большом количестве, способные образовать ядовитые пары и пылевоздушные смеси, во время вспышки которых давление воздуха в здании или помещении выше 5кПа.

В

(пожароопасно)

В здании есть горючие или трудногорючие жидкости и/или материалы и твёрдые вещества. При этом они способны легко воспламеняться при контакте с кислородом, чужеродной жидкостью или друг с другом, не вызывая взрыва, а только горение.
Г

(потенциально опасно)

В здании или помещении находятся негорючие вещества и материалы в нагретом состоянии или в процессе обработки. При этом возможно выделение тепла, света, искр и т.д.
Д

(отсутствие опасности)

В здании только негорючие жидкости и прочие материалы в охлаждённом или замороженном состоянии.

Классы опасности возгорания здания

Чтобы знать точно, как определить степень огнестойкости здания, конструкции различных методов постройки подразделяют на некоторые категории. В соответствии со СНиП 21.01.97 «Тех. регламент требований пожарной безопасности» все здания подразделяют на несколько классов К (состояние несущих конструкций, стен и лестниц) и С (состояние всего здания в целом).

степень огнестойкости здания как определить

Что такое категория К?

1. К0 (непожароопасно).
Конструкция не повреждена, внутри помещения не находятся легко воспламеняющиеся материалы (около несущих конструкций), сами несущие конструкции не способны к самовозгорания и возгорания при средних температурах (~500°С).
2. К1 (малопожароопасно).
На несущих конструкциях здания допускаются повреждения не более 40см по горизонтали и вертикали. Отсутствует наличие горения или теплового эффекта.
3. К2 (умереннопожароопасно).
На несущих конструкциях допускаются повреждения по вертикали до 80 см, по горизонтали до 50 см. Также отсутствует наличие теплового эффекта.
4. К3 (пожароопасно).
Повреждения несущих конструкций более 80 и 50 см. Возможно наличие теплового эффекта и горения.

Что такое категория С?

  1. С0 — несущие конструкции, лестничные клетки, подсобные помещения и т.д. соответствуют классу К0.
  2. С1 — допускается повреждение несущих конструкций и перегородок до К1, наружных стен до К2, а лестничные клетки и сами лестницы должны быть в идеальном состоянии.
  3. С2 — повреждение несущих конструкций и перегородок допускается до К2, внешних стен до К3, лестниц и лестничных клеток до К1.
  4. С3 — повреждения лестничных клеток и лестниц до К1, остальное не рассматривается.

Оба показателя непосредственно связаны друг с другом и необходимы, чтобы узнать, как определить огнестойкость здания.

Степени огнестойкости зданий

Очевидно, чтобы понять, как определить степень огнестойкости здания, нужно обратиться к расчётам и практическим методам, но все полученные в ходе тестирования результаты должны быть занесены в таблицу, чтобы можно было соотнести показатели и выявить, соответствует ли здание конструктивным нормам.
В Конституции РФ рассматривают несколько уровней огнестойкости зданий. Отразим это в наглядной таблице.

определение огнестойкости

Категория огнестойкости Уровень практической пожароопасности здания Максимальная допустимая высота Площадь пожарного отсека
I C0

С0

С1

75 м

50 м

28 м

2500 м2

2500 м2

2200 м2

II С0

С0

С1

28 м

28 м

15 м

1800 м2

1800 м2

1800 м2

III С0

С1

С2

5 м

5 м

2 м

100 м2

800 м2

1200 м2

IV Не рассматривается 5 м 500 м2
V Не рассматривается 3; 5 м 500; 800 м2

Что такое СНиП?

СНиП — Строительные Нормы и Правила — свод законов, учреждённых законодательной и исполнительной властью РФ, регламентирующий правила строительства городских и сельских зданий и сооружений. Также в этот документ входят архитектурные проектирования и инженерные поиски. После его детального изучения собственник легко сможет пользоваться чертежами зданий и определять состояние конструкции.

Всегда нужно пользоваться справочными материалами, чтобы узнать степень огнестойкости здания. Как определить СНиП для конкретного здания при помощи справочных материалов и паспорта сооружения? Как правило, опытные граждане обращаются к своду СНиП (21.01.97) — о пожарной безопасности сооружений и зданий.
А чтобы подготовиться к тестированию, рекомендуется изучить СНиП (31.03.2001), в которых повествуется о законах постройки и эксплуатации сооружений и зданий РФ.

Правила определения огнестойкости зданий

А теперь, зная, зачем собственнику нужно знать, как определить степень огнестойкости здания, установим основные правила во время практического применения пособия.

как определить огнестойкость здания

  1. Во время тестирования при себе необходимо иметь архитекторский план сооружения, «Правила по обеспечению огнестойкости и огнесохранности железобетонных конструкций», «Пособие по определению пределов огнестойкости конструкций к СНиП», Пособие к СНиП «Предотвращение распространения пожара».
  2. Предел стойкости конструкции выражается во времени воздействия на испытуемое здание простого пожара. Когда состояние конструкции достигнет одного из пределов, пожар искусственно прекращают.
  3. Перед тестированием изучите документы на здание: характеристика, материалы, прикидки огнестойкости и т.д.
  4. Обратите внимание на наличие или отсутствие в документах заключения об использовании специальных технологий для повышения уровня огнестойкости.
  5. Во время предварительного изучения конструкций здания необходимо учесть все подсобные помещения, лестничные пролёты и т.п. Возможно, для их изготовления использовались иные материалы или же они уже повреждены и их прочность значительно снижена.
  6. Во время постройки современных или больших сооружений архитекторами нередко используются новейшие технологические решения. Зачастую они могут оказаться не такими прочными, как основная часть конструкции, что стоит учесть.
  7. Заранее подготовьте методы тушения возгорания. Наймите пожарную бригаду, проверьте исправность баллонов и шлангов и только после полного соблюдения норм безопасности приступайте к работе.

После выполнения подготовительного этапа можно переходить к практике.

Определение огнестойкости практическим методом

Теперь, настало время узнать общий способ, по которому рассчитывается степень огнестойкости зданий и сооружений. Как определить практическими методами этот показатель, и какие приборы для этого нужны?

степень огнестойкости зданий и сооружений как определить
Во-первых, насколько детально бы не был изучен архитекторский план здания и справочные материалы, их обязательно нужно взять с собой.
Для проведения испытания установите печь так, чтобы поверхность её находилась на расстоянии 10 см от испытуемой части здания. С помощью форсунки в печь взбрызгивают керосин (как правило) и поджигают. Температуру в топке регулируют с помощью термопара.

Воспользуйтесь таблицей температур горения и плавления различных материалов, чтобы не вызвать настоящий пожар.

Таблица значений температур плавления и горения

Древесина 230-260°С Сотовый поликарбонат 220–240°С
ПВХ ~400°С Сталь 1450–1600°С
Бетон (цемент) ~1500°С Гипс 900°С
Красные кирпичи ~1300°С Гипсобетон До 1450°С
Огнеупорные кирпичи >1580°С Глина 1350-1580°С

Сущность значения огнестойкости

Обычным пожаром с помощью печи воздействуют на определенную часть здания до того времени, пока материал не достигнет своего предела: загорится, размягчиться и т.д. Показатель огнестойкости — это количество часов или минут воздействия на конструкцию огнем при определённой температуре, а также скорость распространения огня. У разных типов зданий временной показатель может колебаться от 0.2 до 2.5 часов, а скорость возгорания от 0 до 40 см в минуту. как определить степень огнестойоксти здания
Таким методом рассчитывается степень огнестойкости жилого здания. Как определить после эксперимента точный уровень остальных параметров? Для этого надо обратиться к таблицам уровней безопасности материалов несущих конструкций и уровней конструктивной безопасности (таблицы К и С соответственно).
Однако в реальной жизни могут применяться различные способы расчётов того, как определить степень огнестойкости здания. Примеры некоторых общественных заведений помогают лучше понять основную структуру практического метода.

Определение огнестойкости детского сада или школы

Учебные заведения после постройки начинают функционировать не сразу. Сначала архитекторы и застройщики должны пройти через ряд обязательных испытаний пригодности здания для нахождения в нём людей, особенно, младшего школьного и детсадовского возраста. Очень часто нанимают людей, чтобы вычислить степень огнестойкости здания детского сада. Как определить её без формул и прикидок, при этом не повредив здание, изучают отдельно.

степень огнестойкости здания детского сада как определить
Степень огнестойкости зависит от кол-ва мест в саду и от высоты здания. Одно-двух этажные сады (50 мест; 3 м) должны иметь III степень огнестойкости и С0 пожарной опасности.

Здания вместимостью более 100 мест и высотой 3 м должны иметь С1 пожарной безопасности и III степень огнестойкости здания. Как определить число мест? Этот показатель зависит от населённости района. По СНиП количество мест в яслях разрешается увеличивать до 120 на 1000 жителей района, в среднем 60-90 .
Сады вместимостью более 150 мест должны иметь II степень огнестойкости и С1 пожарной безопасности. При высоте не менее 6 м.

Детские учреждения с более чем 350 детскими местами и высотой 9 м имеют II или I уровень стойкости и С0 или С1 безопасности.

Определение стойкости районной больницы

Уже известно, как определить степень огнестойкости здания, если это школа или детский сад, а что делать с больницами? Для них есть свои правила и нормы.
У общественных зданий подобного типа максимальная допустимая высота 18 м, при этом степень огнестойкости должна быть I или II, а безопасности С0.
При высоте до 10 м огнестойкость понижается до II, а конструктивная безопасность до С1.

степень огнестойкости здания как определить
Если высота здания 5 и менее метров, то степень огнестойкости может быть III, IV или V, а уровень конструктивной безопасности соответственно С1, С1-С2, С1-С3.
Нет ничего более сложного в изучении темы «Степень огнестойкости здания», как определить рб (районной больницы) уровень безопасности.

Вывод

Не так сложно на самом деле определить степень огнестойкости здания. Трудности возникают только на практическом этапе, однако это менее половины и даже менее трети общей работы. После изучения архитектурного плана, состояния здания в целом и состояния несущих конструкций, испытателем уже проделана большая часть работы!

Рассчитать предел огнестойкости конструкций более затратно, чем сложно. Главное, во время тестирования соблюдать предельную остороржность, внимательность и контролировать температуру в печи.

businessman.ru